Temporal Pattern Recognition in Noisy Non-stationary Time Series Based on Quantization into Symbolic Streams: Lessons Learned from Financial Volatility Trading

نویسندگان

  • Peter Tiňo
  • Christian Schittenkopf
  • Georg Dorffner
چکیده

In this paper we investigate the potential of the analysis of noisy non-stationary time series by quantizing it into streams of discrete symbols and applying finitememory symbolic predictors. The main argument is that careful quantization can reduce the noise in the time series to make model estimation more amenable given limited numbers of samples that can be drawn due to the non-stationarity in the time series. As a main application area we study the use of such an analysis in a realistic setting involving financial forecasting and trading. In particular, using historical data, we simulate the trading of straddles on the financial indexes DAX and FTSE 100 on a daily basis, based on predictions of the daily volatility differences in the underlying indexes. We propose a parametric, data-driven quantization scheme which transforms temporal patterns in the series of daily volatility changes into grammatical and statistical patterns in the corresponding symbolic streams. As symbolic predictors operating on the quantized streams we use the classical fixed-order Markov models, variable memory length Markov models and a novel variation of fractal-based predictors introduced in its original form in [1]. The fractal-based predictors are designed to efficiently use deep memory. We compare the symbolic models with continuous techniques such as time-delay neural networks with continuous and categorical outputs, and GARCH models. Our experiments strongly suggest that the robust information reduction achieved by quantizing the real-valued time series is highly beneficial. To deal with nonstationarity in financial daily time series, we propose two techniques that combine “sophisticated” models fitted on the training data with a fixed set of simple-minded symbolic predictors not using older (and potentially misleading) data in the training set. Experimental results show that by quantizing the volatility differences and then using symbolic predictive models, market makers can generate a statistically significant excess profit. However, with respect to our prediction and trading techniques, the option market on the DAX does seem to be efficient for traders and non-members of the stock exchange. There is a potential for traders to make an excess profit on the FTSE 100. We also mention some interesting observations regarding the memory structure in the studied series of daily volatility differences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which ...

متن کامل

The profitability of trading volatility using real-valued and symbolic models

Essentially, there are two notions of volatility in literature: historical volatility and implied volatility. While measures of the former notion are derived from historical returns by (weighted) averaging over a time window, measures of the latter are estimated from observed option prices. Whatever particular volatility measure one is willing to apply, a central question is that of predictabil...

متن کامل

The Benefit of Information Reduction for Trading Strategies

Motivated by previous findings that discretization of financial time series can effectively filter the data and reduce the noise, this experimental study compares the trading performance of predictive models based on different modelling paradigms in a realistic setting. Different methods ranging from real-valued time series models to predictive models on a symbolic level are applied to predict ...

متن کامل

An Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market

Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...

متن کامل

Profitability of Momentum and Contrarian Strategies Based on Trading Volume in Tehran Stock Exchange: A Comparison of Emerging Market

In this study, the profitability of contrarian and momentum strategies were traded in mid- term based on trading volume. The stocks were categorized into three parts (high, middle and low) at the outset. Then, the relationship between excess return with three components such as cross-sectional risk, lead-lag effect and time-series pattern were examined based on Jegadeesh and Titman approach.The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000